Short Communication

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1970). B26, 649

Unit cell and crystal structure of nordstrandite, Al(OH)₃. By HERMAN J. BOSMANS, Faculteit der Landbouwwetenschappen, Katholieke Universiteit te Leuven Heverlee, Belgium

(Received 18 April 1967 and in revised form 27 October 1969)

The X-ray powder pattern of synthetic nordstrandite, Al(OH)₃, has been indexed by the Ito-de Wolff method on the basis of a triclinic unit cell with Z=2. $a=5\cdot114$, $b=5\cdot082$, $c=5\cdot127$ Å; $\alpha=70^{\circ}16'$, $\beta=74^{\circ}0'$, $\gamma=58^{\circ}28'$. A structural model based on space group PI was refined by least squares; a suggested superstructure was not taken into account. Dioctahedral Al(OH)₃ layers similar to those in the other known Al(OH)₃ polymorphs, are displaced with respect to one another. The hydroxyl groups of adjacent layers approach superposition. This suggests hydrogen bonding between the layers as in the case of gibbsite, but here it is a result of the shift and not of the reversal of the layers.

Nordstrandite, an uncommon crystalline $Al(OH)_3$ phase, has been identified as such by van Nordstrand, Hettinger & Keith (1956) in synthetic products. Since then it has also been found to occur in nature (Wall, Wolfenden, Beard & Deans, 1962; Hathaway & Schlanger, 1962, 1965).

Two powder samples were prepared in a pure state according to the methods of Hauschild (1963). One sample was obtained by reacting slightly amalgamated Al plates in a 5% aqueous ethylenediamine solution for six weeks at room temperature, and the second sample was prepared by allowing an amorphous precipitated aluminum hydroxide gel to stand in an ethylenediamine solution at 58°C for six weeks. The X-ray powder patterns of the two samples were nearly identical, the sample prepared from the gel showing a somewhat higher degree of crystallinity. The chemical composition was found to correspond to Al₂O₃.3H₂O (by chemical analysis Al₂O₃.2·93H₂O or 34·0% H₂O and 65·7% Al₂O₃ by weight).

The 2θ values of the nordstrandite X-ray powder pattern were measured with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å) on a diffractometer with quartz powder (25%) as an internal standard. The intensities were recorded by integrating the whole peak, and subtracting the background. By using a sufficiently thick layer, the need for an absorption correction was obviated (Cullity, 1956).

All the observed peaks of the powder pattern could be indexed on the basis of a triclinic unit cell, by use of the general indexing method of Ito (1949) as extended by de Wolff (1957). The parameters, calculated from three sets of six unequivocally indexed lines, are

a = 5.114	b = 5.082	c = 5.127 Å
$\alpha = 70^{\circ} 16'$	$\beta = 74^{\circ}0'$	$\gamma = 58^{\circ} 28'$

The cell content Z=2 was calculated from the measured density which was 2.51 g.cm⁻³ according to Hauschild (1963), or 2.436 g.cm⁻³ according to Young as quoted by Hathaway & Schlanger (1962). The calculated density with two formula units per unit-cell is 2.400 g.cm⁻³.

Following the standard Bravais-Buerger method (Buerger, 1957), a reduced unit cell was derived. The transfor-

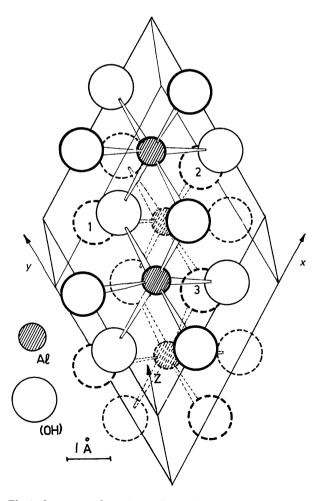


Fig. 1. Structure of nordstrandite, $Al(OH)_3$, projected on the xy plane.

mation matrix for obtaining the conventional cell from the given cell is [010/001/1T0].

The reduced unit cell has the following parameters:

$$a_r = 5.082$$
 $b_r = 5.127$ $c_r = 4.980$ Å
 $\alpha_r = 93^{\circ}40'$ $\beta_r = 118^{\circ}55'$ $\gamma_r = 70^{\circ}16'$

Following a preliminary paper, Saalfeld & Mehrotra (1966) have reported X-ray data obtained from a natural single crystal, in samples originating from Sarawak (Wall *et al.*, 1962). They have obtained a triclinic unit-cell with Z=8. The original parameters of Saalfeld & Mehrotra are

$$a_s = 8.893$$
 $b_s = 5.004$ $c_s = 10.237$ Å
 $\alpha_s = 92^{\circ}56'$ $\beta_s = 110^{\circ}23'$ $\gamma_s = 90^{\circ}32'$

On application of a linear transformation using the matrix

$$\left[\frac{1}{2}\frac{1}{2}0/\frac{1}{2}\frac{1}{2}0/00\frac{1}{2}\right]$$

it is seen that their unit cell is a quadruple of our unit cell. The transformed parameters are

$$a'_{s} = 5 \cdot 122$$
 $b'_{s} = 5 \cdot 082$ $c'_{s} = 5 \cdot 119$ Å
 $a'_{r} = 69^{\circ} 47'$ $\beta'_{r} = 73^{\circ} 45'$ $\gamma'_{s} = 58^{\circ} 44'$

All 23 spacings d_{hkl} published by Saalfeld & Mehrotra (1966) agree with our values for the corresponding reflexions (in line no. 43 the indices (332) of Saalfeld & Mehrotra are in error). It should be noted that every index triple hkl of Saalfeld & Mehrotra has (h+k) even and l even. Presumably the reciprocal lattice points corresponding to the superlattice give rise to unobservably weak structure lines in our material. Electron diffraction on selected areas of the sample revealed only a doubling of the c axis (unpublished data of H.Bosmans & C. de Kimpe).

We proceeded to derive a structure based on the subcell described above, ignoring the existence of a superstructure. A model based on the assumed space group $P\overline{1}$ refined satisfactorily.

The a, b and y parameters (5.114 and 5.082 Å, and 58°28') of the simple unreduced triclinic cell appear to represent a deformation of the basal plane of the ideal trigonal (hexagonal) layer-structure which has a=5.1 Å and $y=60^{\circ}$, as in the bayerite structure (e.g. Montoro, 1942; Yamaguchi & Sakamoto, 1958) and as first proposed for the structure of gibbsite (Pauling, 1930).

The basal spacing d_{001} of nordstrandite is intermediate between those of the other Al(OH)₃ polymorphs: $d_{001} = 4.72$ Å for bayerite, $d_{001} = 4.79$ Å for nordstrandite, and $d_{002} =$ 4.85 Å for the two gibbsite polymorphs (monoclinic and triclinic forms), the latter two containing two layers per unit cell as calculated from the data of Saalfeld (1960).

The acute angle $\alpha = 70^{\circ} 16'$ and $\beta = 74^{\circ} 0'$ suggest a displacement of one layer with respect to the other. Because of this shift, the hydroxyl groups of one layer are no longer directly above the interstices of the adjacent layer as in the case of bayerite, but are close to being imposed on the hydroxyl groups of adjacent layers. This suggests hydrogen bonding between the layers as in gibbsite (Bernal & Megaw, 1935), but in this case it is a result of a displacement of the layers and not of their reversal. In this way the Al atoms in neighbouring layers are shifted with respect to one another in contrast to the situation in bayerite and the two gibbsites.

An ideal trial structure with $z_{OH} = 0.288$ and a mean shortening of the shared edges in the xy plane of 0.020 relative to the a and b parameters gave a reliability index $[R = \sum (|kF_o| - |F_c|) / \sum |kF_o|]$ of 23.2% for 28 non-overlapping powder reflexions. Application of the least-squares refinement program of G.S.D. King (*ERA* 301) on the

Fig.2. Structure of nordstrandite, $Al(OH)_3$, reduced cell, projected on the xz plane.

IBM 1620 computer resulted in a drop of the reliability index R to 15.1% after five cycles. The projection of the structure, based on the non-reduced cell - to permit easy comparison with the simple structure of bayerite (Yamaguchi & Sakamoto, 1958), for example - is given in Fig. 1 and the atomic coordinates are listed in Table 1. The temperature factor B was put equal to zero, because it did not refine satisfactorily.

To conform with the conventional presentation of triclinic cells, the structure is described in terms of the reduced cell. The projection of this cell is given in Fig.2 and the atomic coordinates are listed in Table 2.

Table 2. Atomic coordinates of nordstrandite (reduced cell)

	Xr	<i>yr</i>	Zr
Al	0.670 ± 0.006	0.010 ± 0.005	0.337 ± 0.005
(OH) (1)	0.252 ± 0.014	0.242 ± 0.010	0.319 ± 0.011
(OH) (2)	0.534 ± 0.010	0.203 ± 0.009	-0.057 ± 0.009
(OH) (3)	0.908 ± 0.011	$0{\cdot}208\pm0{\cdot}009$	0.622 ± 0.010

The reasonable agreement between the observed and 0.242 ± 0.010 calculated intensities (Table 3) suggests that the basic fea- $0{\cdot}203\pm0{\cdot}009$ 0.208 ± 0.009 tures of the structure of nordstrandite are probably correct,

Table 3. Powder data for nordstrandite, Al(OH) ₃							
No.			This work			Saalfe	eld et al.
(Hauschild)	$\overline{d_{hkl}}$ obs.	d_{hkl} calc.	hklr	Iobs	Icalc	hkl	d_{hkl} obs.
	4·791	4.789	010	100.0	111.0	002	4.790
1	4.320	4.326	001	27.0	18.3	110	4.330
2 3	4.205	4.209	101	∫ 18·0	∫ 14·2	110	4.220
4	4.160	4.163	100	12.0	13.4	200	4.162
5	3.888	3.894	110	11.0	14.6	202	3.896
6	3.609	3.612	111	8.0	15.1	112	3.604
7	3.427	3.427	011	5.0	4.8	Ī12	3.446
8	3.028	3.029	01T	3.3	4.2	112	3.022
9	2.848	2.845	Ť	3.0	5.5	112	2.867
10	2.710	2.705	iTo	2.5	2.2		
12	(2.501)	2.502	211	(<u>1</u> .0	1.7		
		(2.489)	[120	i	(0·2		
13	2.480	2.484	{ T 02	{	{ 0.4		
		2.483	111	j 12·0	8.8	312	2.481
14	2.455	2.456	101	į 8·0	ۥ8	310	2.454
		(2·394	∫ 020	27.0	∫ 4.5	004	2.393
15	2.393	j́ 2·391	<u>ໂ</u> 201		ો 34∙6	310	2.393
16	2.333	2 ⋅331	`12 <u>⊺</u>	5.0	4.4	_	
17	2.271	2.269	112	29.0	37.9	022	2.265
18	2.217	∫ 2·216	∫ 210	3.0	∫ 0·1		
10	2.217	<u>ן</u> 2·214	021		<u></u> 0·3		
		2.163	002	∫ 0.7	∫ <u>1</u> ·0		
19	2.146	2.146	<u>112</u>	į́2∙5	2.0		
20	2.113	∫ 2·120	∫ 21 <u>2</u>	1.6	{ 0.7		
20	2115		202		<u>]</u> 1·1		
		2.081	200	•	0.9		
21	2.074	{ 2.077	{ 22T	3.0	{ 0.6		
		2.069	012	(24.0		314	0.01.5
22	2.016	2.017	121	$\begin{bmatrix} 24.0\\ 2.0 \end{bmatrix}$	36.0	314	2.015
23	(1.991)	1.993	021	$\begin{cases} 2.0 \\ 1.0 \end{cases}$	{ 1.5		
24	1.975	1.973	111	[1·0 5·0	0.9		
25	1.945	1.947	$\frac{220}{211}$	(19·0	1.6 ∫ 31.6	312	1.904
26	1.902	1·889 1·897	121 121] 190	{ 0.5	512	1.904
27	(1.877)	1.886	$01\overline{2}$	2.0	2.0		
27	(1·877) 1·821	1.817	120	2.0	$\begin{array}{c} 2.0\\ 2.0\end{array}$		
(28')	1.804	1.806	222	3.0	1.7		
		[1·786	∫ 120		23.0	024	1.781
29	1.784	1.778	<u>)</u> 212	13.0	2.2	021	1 /01
30	1.715	1.714	022	1.0	0.6		
31	1.704	{ 1.705 } 1.702	$\begin{cases} 130 \\ 2\overline{10} \end{cases}$	2.0	$\begin{cases} 0.0\\ 1.2 \end{cases}$		
		1.679	210		$\begin{cases} 1^{1}2\\ 0.1 \end{cases}$		
32	1.668	1.671	$\begin{cases} 211 \\ 311 \end{cases}$	4.0			
52	1.000	1.668	T22	τU	6.1		
		1.655	112	• •	2.7		
33	1.653	1.652	312	3.0	1.3		
34	1.632	1.634	103	1.5	0.3		

Table 3 Powder data for nordstrandite Al(OH)

y z х 0.333 ± 0.007 0.010 ± 0.005 0.337 ± 0.005

 0.933 ± 0.012

 0.591 ± 0.010

 0.285 ± 0.013

Table 1. Atomic coordinates of nordstrandite, Al(OH)3

 0.319 ± 0.011

 0.943 ± 0.009

 0.622 ± 0.010

Al

(OH) (1)

(OH) (2)

(OH) (3)

Ne			This work			Saalfeld et al.	
No. (Hauschild)	dnki obs	dnki calc	hklr	Iobs	Icalc	hkl	dnki obs
35	1.616	$ \left\{\begin{array}{c} 1.625 \\ 1.620 \\ 1.614 \end{array}\right. $	$ \left\{\begin{array}{c} 13\overline{1}\\ 102\\ \overline{2}02 \end{array}\right. $	1.0	$ \begin{cases} 0.4 \\ 0.3 \\ 0.6 \end{cases} $		
36	1.598	{ 1.599 1.597 1.596 1.594	$ \left\{\begin{array}{c} 23\overline{1}\\ 21\overline{3}\\ 030\\ 201\\ 201\\ 03\overline{2}\\ 032$	5.0	$ \left\{\begin{array}{c} 6.7 \\ 1.0 \\ 0.1 \\ 0.1 \end{array}\right. $	316	1·595
37	1.572	1 · 591 1 · 576 1 · 571	$ \begin{array}{c} 32\overline{1} \\ 221 \\ 30\overline{3} \\ 20\overline{3} \end{array} $	4.0	$ \begin{cases} 0.0 \\ 1.1 \\ 1.4 \end{cases} $		
38	1.560	$ \left\{\begin{array}{c} 1.564 \\ 1.561 \\ 1.560 \end{array}\right. $	30T 031 230	1.0	$ \left\{\begin{array}{c} 1\cdot 6\\ 1\cdot 1\\ 4\cdot 2\\ \cdot 2 \end{array}\right. $		
39	1.547	1.552 1.550 1.547 1.546	$ \begin{cases} 32\overline{2} \\ 131 \\ \overline{113} \\ 11\overline{3} 11\overline{3} \end{cases} $	6.0	0.2 5.9 0.3 0.7		
40	1.517	{ 1.516 { 1.515 { 1.515] 1.513	$ \left\{ \begin{array}{c} 113 \\ 121 \\ 022 \\ 122 \end{array} \right. $	7.0	$ \begin{cases} 0.7 \\ 11.2 \\ 0.7 \\ 3.3 \end{cases} $	314	1.513
41	1.479	1·479 1·471	$\begin{cases} 310 \\ 213 \end{cases}$	6.0	8.9 0.1	602	1.478
42	1.465	` 1∙463	221	2.0	1.5		
43	1•441	$ \left\{\begin{array}{c} 1\cdot447\\ 1\cdot442\\ 1\cdot441\\ 1\cdot441\\ 1\cdot441\\ 1\cdot438\\ \end{array}\right. $	$ \left\{\begin{array}{c} 23\overline{2} \\ 003 \\ 31\overline{3} \\ 320 \\ 03\overline{1} \\ 1\overline{12} \end{array}\right. $	14.0	$ \left\{\begin{array}{c} 0.4 \\ 7.6 \\ 10.5 \\ 6.1 \\ 0.5 \\ 0.1 \end{array}\right. $	3 <u>30</u> 33 <u>2</u> (332)*	1.440
44	1.430	$ \left\{\begin{array}{c} 1.431 \\ 1.430 \\ 1.423 \end{array}\right. $	$ \left\{ \begin{array}{c} 22\overline{3} \\ 013 \\ \overline{2}22 \end{array} \right. $	5.0	$\left\{\begin{array}{c} 1.0\\ 7.5\\ 0.7\end{array}\right.$	224	1.431
45	1.404	1 ·403	<u>`303</u>	3.0	3.9	330	1.403
46	1.388	$ \left\{\begin{array}{c} 1 \cdot 388 \\ 1 \cdot 388 \\ 1 \cdot 388 \\ 1 \cdot 387 \\ 1 \cdot 38$	$ \left\{\begin{array}{c} 33\overline{1}\\ \overline{1}31\\ 300\\ 2\overline{1}1\\ 12\overline{2} \end{array}\right. $	1.5	$\begin{cases} 0.1 \\ 0.0 \\ 0.6 \\ 0.8 \\ 0.7 \end{cases}$	600	1.388
47	1-370	[1·387 1·3 73	13 <u>2</u> 312	1.0	} 0·7 } 0·7		
48	1.365	1·368 1·363	032 231	0.6	{ 0·9 0·6		

Table 3 (cont.)

* A misprint in Saalfeld & Mehrotra.

but in view of a superstructure revealed by the single-crystal work of Saalfeld & Mehrotra (1966) these coordinates should clearly be considered as mean values.

References

- BERNAL, J. D. & MEGAW, H. D. (1935). Proc. Roy. Soc. A 151, 384.
- BUERGER, M. J. (1957). Z. Kristallogr. 109, 42.
- CULLITY, B. D. (1956). *Elements of X-ray Diffraction*. Reading, Mass.: Addison-Wesley.
- HATHAWAY, J. C. & SCHLANGER, S. O. (1962). Nature, Lond. 196, 265.
- HATHAWAY, J. C. & SCHLANGER, S. O. (1965). Amer. Min. 50, 1029.

HAUSCHILD, U. (1963). Z. anorg. Chem. 324, 15.

- Iто, Т. (1949). Nature, Lond. 164, 755.
- MONTORO, V. (1942). Ric. Sci. 13, 565.
- Nordstrand, R. A. van, Hettinger, W. P. & Keith, C. D. (1965). *Nature, Lond.* 177, 713.
- PAULING, L. (1930). Proc. Nat. Acad. Sci. Wash. 16, 123.

SAALFELD, H. (1960). Neues. Jb. Miner. 95, 1.

- SAALFELD, H. & MEHROTRA, B. B. (1966). Naturwissenschaften, 53, 128.
- WALL, J. R. D., WOLFENDEN, E. B., BEARD, E. H. & DEANS, T. (1962). Nature, Lond. 196, 264.

WOLFF, P. M. DE (1957). Acta Cryst. 10, 590.

YAMAGUCHI, G. & SAKAMOTO, K. (1958). Bull. Chem. Soc. Japan, 31, 140.